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Abstract. Model-based management of software applications in the cloud is 
based on predicted delays at scaled out services. These services are modeled as 
FIFO (first-in first-out) multiservers, with many servers, users and types of oper-
ation (classes of service). Efficient approximations for these multiservers either 
scale badly for large systems, or have convergence and accuracy problems. This 
work investigates three scalable approximations in depth. The best (called AB) 
combines class aggregation and a binomial approximation to the queue state 
(which assumes that users behave independently). Over the parameters of great-
est relevance, two-thirds of the errors are less than 5%. The largest errors, up to 
about 30%, occur near the onset of saturation. 
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1 Introduction 

Model-based management of services can react quickly to changes and can coordi-
nate the scaling of multiple services, as demonstrated in [12]. However, because a 
scaled-out service is a multiserver, it depends on efficient and robust solution methods 
for multiserver queues. Existing methods do not meet all the requirements of (i) accu-
racy, (ii) robust solution in terms of dependable convergence of iterative steps, and (iii) 
fast solution, and they have not been fully evaluated. This work fills that gap. 

The problem is illustrated by the Sock Shop microservices example used in [12]. Six 
services have sets of load-balanced replicas. The model in Figure 1 is a layered queue-
ing network (LQN) [8,10,11] adapted from [12] with three sets of Clients. The multi-
plicity of clients and services is shown in curly brackets such as {225} or (for a variable) 
{$m}. The small nested parallelograms indicate operations with CPU demands in ms. 
(e.g. [1.2]), and arrows represent calls. The LQNS solver uses iterative Approximate 
Mean Value Analysis (AMVA) (e.g., [2]) as an overall strategy with options for differ-
ent algorithms for the multiservers, having different tradeoffs of accuracy and speed.  

Table 1 shows the LQNS solution time for three multiserver options, “Conway” 
(preferred for accuracy), “Rolia” or “RF” (preferred for speed) and “AB”, which was 
developed in this research and is new. Conway takes much the longest and scales badly 
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in general; Rolia is fast, and AB is faster. A second difficulty with the Rolia option, 
which motivated this research, is weak robustness due to non- convergence. 

 
Fig. 1.  A Layered Queueing Model of the SockShop Microservices Demo [12] 

Table 1.  Comparison of LQNS Solution Times of the SockShop Model ($N = 7000, $m = 110) 

Approximation Conway AB Rolia (RF) 
Complexity per iteration  

(for 𝑁𝑁𝑐𝑐 customers in class 𝑐𝑐, 𝑚𝑚 servers, 𝐶𝐶 classes) 
O(𝐶𝐶3 ∏ 𝑁𝑁𝑐𝑐𝑐𝑐 ) O(𝑚𝑚 + 𝐶𝐶) O(𝐶𝐶) 

Solution time (seconds) 928.7 0.118  1.426  
 
 The goal of this research is to evaluate approximations for multiclass FIFO queues 

that are heterogeneous (different service times by class), scalable (in the sense of, in-
sensitive to the number of customers) and more robust than RF. They combine scalable 
single-class approximations which were previously described in [23] with class aggre-
gation. Three  approximations are considered here: 
• AB, based on a binomial approximation to the queue state distribution and de-

scribed for a single customer class in [22, 23] 
• SS, an equivalent single server (not, at this time, implemented in LQNS and so 

not shown in Table 1). 
• RF, the Rolia algorithm as modified by Franks [8]. 

The effectiveness of class aggregation in this context, and the accuracy of AB, SS and 
RF when used with aggregation, were evaluated by comprehensive experiments 
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covering the model parameter space. AB is both the fastest and the most accurate, and 
is robust. RF is the least accurate and not robust. 

2 The Model and the Approximations 

In the multiserver model each customer has two states, “thinking” and requesting 
service. It is a closed multiclass M/M/m/./N queue (that is, with exponential think time, 
exponential service, 𝑚𝑚 servers, and a finite customer population). It has 𝐶𝐶 classes each 
with 𝑁𝑁𝑐𝑐 users, mean think time (time between services) 𝑍𝑍𝑐𝑐 and mean service time 𝑆𝑆𝑐𝑐, 
giving parameter vectors 𝑵𝑵 =  (𝑁𝑁1,𝑁𝑁2, … ), 𝒁𝒁 =  (𝑍𝑍1,𝑍𝑍2, … ), and 𝑺𝑺 =  (𝑆𝑆1, 𝑆𝑆2, . . . ). 
Class 𝑐𝑐 has throughput 𝜆𝜆𝑐𝑐, mean waiting time (in the queue) 𝑊𝑊𝑐𝑐 and mean response 
time 𝑅𝑅𝑐𝑐, with 𝑅𝑅𝑐𝑐 = 𝑊𝑊𝑐𝑐 + 𝑆𝑆𝑐𝑐 and (by Little’s formula) 𝜆𝜆𝑐𝑐 = 𝑁𝑁𝑐𝑐/(𝑅𝑅𝑐𝑐 + 𝑍𝑍𝑐𝑐).  

After aggregation (which is described below) the parameters of the single representa-
tive class are written without the subscripts. The probability that a representative cus-
tomer after aggregation is in the queue or at the server is 𝑃𝑃: 

𝑃𝑃 =  𝑅𝑅/(𝑅𝑅 + 𝑍𝑍).     
Applying approximation Appr gives results denoted as 𝑊𝑊c,Appr

 , 𝑅𝑅c,Appr
 , where Appr 

is one of Exact, AB, RF, SS, Sim. Approximation errors are reported as the relative 
error 𝑅𝑅𝑅𝑅. For class 𝑐𝑐:  

𝑅𝑅𝑅𝑅𝑐𝑐(Appr) = (𝑊𝑊𝑐𝑐,Appr –  𝑊𝑊𝑐𝑐,Exact )/ 𝑅𝑅𝑐𝑐,Exact  
Without a subscript, 𝑅𝑅𝑅𝑅 refers to the representative single class. The notation 𝐴𝐴𝑅𝑅𝑅𝑅 is 
used for the absolute 𝑅𝑅𝑅𝑅, and 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 for the mean absolute 𝑅𝑅𝑅𝑅 over a set of cases.  

In designing experiments the traffic intensity is set by choosing values of a load 
intensity value 𝑇𝑇 which is defined as the ratio of the maximum arrival rate 𝑁𝑁/𝑍𝑍 to the 
maximum service rate 𝑚𝑚/𝑆𝑆: 

𝑇𝑇 = 𝑁𝑁𝑆𝑆/(𝑚𝑚𝑍𝑍). 
The response time function has a “knee” near to 𝑇𝑇 = 1, where it turns up as traffic 

increases, and this is where the largest errors were found. Figure 2 illustrates the close 
relationship between 𝑇𝑇 and the server saturation defined as saturation = utilization/𝑚𝑚. 
The upper curves are for smaller values of 𝑚𝑚 and 𝑁𝑁, and the lower curves for larger 
values. For large 𝑁𝑁, the two have nearly equal values from zero up to near unity, and 𝑇𝑇 
then increases without limit as saturation approaches 1.0.  

Since service autoscaling typically keeps the saturation below about 0.9, values of 𝑇𝑇 
between 0 and 2 seem to be of the greatest practical interest. Higher values may occur 
at heavily saturated  bottlenecks without autoscaling. 
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Fig. 2.  The Relationship of the Traffic Intensity to Server Saturation for an M/M/m Queue, for 

all combinations of 𝑚𝑚 = [2, 5, 20] and 𝑁𝑁 = [10, 100, 1000] 

For multiclass evaluation experiments the per-class intensities were set to a value 
𝑇𝑇𝑐𝑐 ’ = 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝐶𝐶 , where 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is chosen as a nominal total intensity. The resulting  
intensity 𝑇𝑇 for the representative class was then found to be close to 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . 

2.1 The Approximations for One Class 

For the representative class with parameters N, S, and Z, the approximations are: 

The Rolia-Franks Approximation (RF, giving approximation 𝑊𝑊𝑅𝑅𝑅𝑅  ) ([15], [8] ch. 6) as-
sumes independent servers to estimate the probability 𝑃𝑃𝑃𝑃 that all servers are busy. Us-
ing this 𝑃𝑃𝑃𝑃, it estimates waiting at each iteration by: 

 𝑊𝑊 =  𝑆𝑆 + 𝑃𝑃𝑃𝑃 (𝑆𝑆 𝑚𝑚⁄ ) 𝐿𝐿∗ , (1) 

where 𝐿𝐿∗ is the expected customers when 𝑁𝑁 is replaced by 𝑁𝑁 − 1, as in conventional 
AMVA [2]. In fixed-point iteration, convergence requires under-relaxation of the form 

updated 𝑊𝑊 = α (new 𝑊𝑊 as in Eq. (1)) + (1 -  α)(previous 𝑊𝑊)       
with a relaxation parameter α less than unity. The complexity of RF combined with 
AMVA by Proportional Estimation (PE) [18] or by Linearizer [5] is O(1) per iteration 
for each multiserver queue, making RF scalable in our sense. 

The Equivalent Single Server (SS, giving 𝑊𝑊𝑆𝑆𝑆𝑆): Some reports on model-based auto-
scaling (e.g. [20, 21] have approximated a set of 𝑚𝑚 servers by a faster single server with 
service time 𝑆𝑆/𝑚𝑚. SS also adds an additional delay 𝑆𝑆(1 –  1/𝑚𝑚) to provide the correct 
total delay at light loads, which is not found in the references. The additional delay is 
added to the response time of the server, but does not contribute to the server utilization. 
The model is solved as a single server by AMVA. Using PE the time complexity of 
each iteration is O(1), and with Linearizer [5] it is larger but also O(1).  
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The Arrival-theorem Binomial Approximation (AB, giving 𝑊𝑊𝐴𝐴𝐴𝐴): AB assumes that 
the movement of customers between the thinking and server states is independent, giv-
ing a binomial distribution with probability 𝑝𝑝(𝐴𝐴)(𝑖𝑖) of 𝑖𝑖 customers at the queue and 
server. This is the single-class version of the approach by deSouza e Silva and Muntz 
described in [19]. It gives: 

𝑝𝑝(𝐴𝐴)(𝑖𝑖) = [𝑁𝑁!/((𝑁𝑁 − 𝑖𝑖)! 𝑖𝑖!)]𝑃𝑃𝑛𝑛(1 − 𝑃𝑃)𝑁𝑁−𝑛𝑛. 
Based on the binomial distribution the probability that all servers are busy is 𝑃𝑃𝑃𝑃𝐴𝐴: 

𝑃𝑃𝑃𝑃𝐴𝐴 = 1 − ∑ 𝑝𝑝(𝐴𝐴)(𝑖𝑖)𝑛𝑛−1
1 . 

The mean waiting time can be found from the throughput, given by: 
𝜆𝜆 = (1 𝑆𝑆⁄ )∑ 𝑖𝑖𝑝𝑝(𝐴𝐴)(𝑖𝑖)𝑛𝑛−1

1 + (𝑚𝑚/𝑆𝑆)𝑃𝑃𝑃𝑃𝐴𝐴 , 
however this direct approach gives inferior estimates. AB instead applies the Arrival 
Theorem [14] by finding the mean number L* in a queue with 𝑁𝑁 − 1 customers, indi-
cated by a superscript (𝑁𝑁-1):  

𝐿𝐿∗ = ∑ (𝑖𝑖 − 𝑚𝑚)𝑝𝑝𝐴𝐴𝐴𝐴
(𝑁𝑁−1)(𝑖𝑖)𝑁𝑁−1

𝑛𝑛=𝑛𝑛+1 . 
This can be re-arranged so that it uses only the first 𝑚𝑚 probabilities: 

 𝐿𝐿∗ = (𝑁𝑁 − 1)𝑃𝑃– (𝑚𝑚 − 1)(1 − ∑ 𝑝𝑝(𝑁𝑁−1)(𝑖𝑖)𝑚𝑚−1
𝑖𝑖=1 ) − ∑ 𝑖𝑖𝑝𝑝(𝑁𝑁−1)(𝑖𝑖)𝑛𝑛−1

𝑛𝑛=1 .  (2) 

Then by the Arrival Theorem, a customer waits on average for 𝐿𝐿∗ departures, giving 

 𝑊𝑊𝐴𝐴𝐴𝐴  =  𝐿𝐿∗ 𝑆𝑆/𝑚𝑚. (3) 

Using Eq. (2) the complexity of AB is O(𝑚𝑚). Since it does not depend on 𝑁𝑁 it is also 
scalable in our sense. 

These three approximations were compared for a single class of customers in [23], 
from which Figure 3 illustrates the relationship of the errors to the traffic intensity 𝑇𝑇 
for cases with 𝑁𝑁 =100, 𝑆𝑆 = 1, 𝑚𝑚 = 3, 10 and 30 and 𝑍𝑍 set to 𝑁𝑁/(𝑚𝑚𝑇𝑇). The relative 
error 𝑅𝑅𝑅𝑅 is largest around 𝑇𝑇 = 1.0 and approaches zero for light and very heavy traffic. 

 

 
  

 
 

 

(a) Three Servers (b) Ten Servers (c) Thirty Servers 

Fig. 3.  Examples of the Relative Errors of the AB, SS and RF Approximations (from [23])  

3 Class Aggregation 

Class aggregation is supported by the observation that the waiting times of different 
classes at a FIFO multiserver are usually not very different [13]. Especially if the 
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populations of the classes are all quite large, it is intuitively reasonable that an arrival 
of any class will see a closely similar mix of classes in the queue, and the FIFO disci-
pline treats all classes equally. This is made more precise in the following hypothesis. 

Interclass Waiting Difference Hypothesis: The maximum difference between the 
mean class waiting times at a FIFO queue is the maximum of the class service times at 
the queue: 

 max𝑐𝑐,𝑑𝑑(|𝑊𝑊𝑐𝑐−𝑊𝑊𝑑𝑑|) ≤ max𝑐𝑐  (𝑆𝑆𝑐𝑐). (4) 

A heuristic argument for this hypothesis assumes (1) the Arrival Theorem and (2) 
that the time to the first departure is the same for all classes. Let 𝑄𝑄 represent the mean 
total work in the queue (excluding the server) at steady state, and 𝑄𝑄𝑐𝑐, the same quantity 
if one customer in class 𝑐𝑐 is removed. By the Arrival Theorem the difference between 
the waiting times of two classes 𝑐𝑐 and 𝑑𝑑 is the difference between 𝑄𝑄𝑐𝑐 and 𝑄𝑄𝑑𝑑 : 

𝑊𝑊𝑐𝑐  −𝑊𝑊𝑑𝑑  =  𝑄𝑄𝑐𝑐  –  𝑄𝑄𝑑𝑑 . 
𝑄𝑄𝑐𝑐 is less than 𝑄𝑄 by an amount due to the removal of the customer, an amount that may 
be reduced by contributions from other classes. This suggests that 

 𝑄𝑄 –  𝑆𝑆𝑐𝑐  ≤  𝑄𝑄𝑐𝑐  ≤  𝑄𝑄  and 𝑄𝑄 – 𝑆𝑆𝑑𝑑  ≤  𝑄𝑄𝑑𝑑  ≤  𝑄𝑄 .  
The hypothesis follows at once by considering the rectangular set of points (𝑊𝑊𝑐𝑐 ,𝑊𝑊𝑑𝑑) 
defined by the inequalities. 
 The hypothesis was also verified experimentally on 500 cases spanning the parame-
ter space, using the Conway solution for cases where it gave a value in reasonable time 
and simulation otherwise, and it was satisfied for every case. 

Aggregation Solution. The aggregation gave a single representative class with pa-
rameters weighted by the relative throughputs, as: 

𝑁𝑁 = ∑ 𝑁𝑁𝑐𝑐𝑐𝑐 ;   𝜆𝜆 = ∑ 𝜆𝜆𝑐𝑐𝑐𝑐 ;   𝑆𝑆 = ∑ 𝜆𝜆𝑐𝑐𝑐𝑐 𝑆𝑆𝑐𝑐/𝜆𝜆;  𝑍𝑍 = ∑ 𝜆𝜆𝑐𝑐𝑐𝑐 𝑍𝑍𝑐𝑐/𝜆𝜆;  𝑇𝑇 = 𝑁𝑁𝑆𝑆/(𝑚𝑚𝑍𝑍) 
The class throughput depends on the approximate waiting 𝑊𝑊 (using Little’s for-

mula), as: 

 𝜆𝜆𝑐𝑐 =  𝑁𝑁𝑐𝑐/(𝑊𝑊 + 𝑆𝑆𝑐𝑐 + 𝑍𝑍𝑐𝑐).  (5) 

Because the throughput depends on 𝑊𝑊 the calculation is iterative, with the following 
outline algorithm:  

High-level Multiclass Waiting-time Algorithm 
input vectors 𝑵𝑵,𝑺𝑺,𝒁𝒁. 
initialize 𝑁𝑁 = ∑ 𝑁𝑁𝑐𝑐𝑐𝑐 , 𝑊𝑊 = ∑ 𝑁𝑁𝑐𝑐𝑆𝑆𝑐𝑐/2𝑐𝑐 , 𝑒𝑒𝑝𝑝𝑒𝑒 = 10-6, 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = 0.7 
repeat until 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑𝑐𝑐𝑒𝑒 < 𝑒𝑒𝑝𝑝𝑒𝑒 

set 𝜆𝜆𝑐𝑐 = 𝑁𝑁𝑐𝑐/(𝑊𝑊 + 𝑆𝑆𝑐𝑐 + 𝑍𝑍𝑐𝑐) for each class 𝑐𝑐 (Eq.(2)) 
find the representative values 𝑁𝑁, 𝑆𝑆 and 𝑍𝑍 from Eq 

(EQ) 
find 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 by the approximation AB, SS, or RF 
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑𝑐𝑐𝑒𝑒 = |𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 – 𝑊𝑊| 
𝑊𝑊 =  𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 ∗𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛  + (1 –  𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟) ∗ 𝑊𝑊  

return 𝑊𝑊 
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3.1 Evaluation Cases 

As there is no exact solution, the relative errors were found by simulation (with 95% 
confidence intervals less than 1% of the estimated waiting). Experiments were per-
formed for two, four and eight classes, with 720 cases each. To create each set, all 
combinations of the following values were employed: 
• ten values of vectors S and Z with components uniformly distributed over [0,1],  
• three values of 𝑚𝑚 in the set [2, 4, 8], 
• 24 values of the nominal traffic intensity 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  with values concentrated in the 

interval (0,2) of greatest interest: 
[0.02,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.84,0.9,0.96,1,1.1,1.2,1.3,1.4,1.5,1.6,2,3,4,6] 

For each combination, 𝑁𝑁𝑐𝑐 for each class was set according to the traffic intensity, as 
𝑁𝑁𝑐𝑐 = max (1, ��𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐶𝐶� �𝑍𝑍𝑐𝑐𝑚𝑚 𝑆𝑆𝑐𝑐� �). 

4 The Approximation Error 

Table 2 summarizes the absolute relative errors, including the single-class results 
reported in [23]. AB has the smallest ARE, and RF the largest. RF also had many con-
vergence failures (fewer if the relaxation factor was reduced, but this also slows down 
the solver). The maximum errors were close to 50% for AB and SS and nearly 100% 
for RF (these were due to convergence failures). It is notable that SS is nearly as good 
as AB on average and has smaller maximum errors. 

Table 2.  Approximation Errors with Different Numbers of Classes 

 Measure Approximation Error  RF non-
converged  AB SS RF 

One class, 0<T<5 
(30000 cases, [23]) 

Mean ARE 0.0089 0.0142 0.0191 14130/30000 
(relax = 0.7) Max ARE 0.243 0.190 0.249 

One class, 5<T<36 
(30000 cases, [23]) 

Mean ARE 0.00041 0.00079 0.00307 24030/30000 
(relax = 0.7) Max ARE 0.0472 0.1859 0.08792 

Two classes 
(720 cases) 

Mean ARE 0.04059 0.04132 0.06166 2/720 
(relax = 0.1) Max ARE 0.4563 0.4005 0.6249 

Four classes 
(720 cases) 

Mean ARE 0.03397 0.03895 0.07989 5/720 
(relax = 0.1) Max ARE 0.5321 0.4649 0.8061 

Eight classes 
(720 cases) 

Mean ARE 0.03236 0.03752 0.1191 25/720 
(relax = 0.1) Max ARE 0.4669 0.3962 0.9288 

 
As classes increase, the mean errors decrease for AB and SS, but increase for RF. 

The relatively small mean errors reported for a single class reflect the distribution of 
single-class cases which emphasized large values of 𝑇𝑇 (which gave small errors).  

The relationship of the relative error to the traffic intensity is displayed in the scatter 
plots of Figure 4. The plots are restricted to 𝑇𝑇 < 3; all errors were small for larger 𝑇𝑇. 
The error patterns are all similar, and similar to the examples in Fig. 3. Away from T=1 
the errors approach zero fastest for AB and slowest, for RF. Above 30% error there are 
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only nine points for AB, and six points for SS, but many more (with much larger values) 
for RF. The largest errors for RF were due to non-convergent solutions, which were 
included in the plots. 

The scatter plots tend to conceal the preponderance of points with small errors, which 
is better seen in the percentile values in Table 3. For AB almost two-thirds of the cases 
had less than 5% error. 

 

   
(a) RE(AB), 2 Classes (b) RE(SS), 2 Classes (c) RE(RF), 2 Classes 

   
(d) RE(AB), 4 Classes (e) RE(SS), 4 Classes (f) RE(RF), 4 Classes 

   
(g) RE(AB), 8 Classes (h) RE(SS), 8 Classes (i) RE(RF), 8 Classes 

Fig. 4.  Scatter plots for the Approximation Errors  

Table 3.   Percentiles of Absolute Relative Errors 

Range of ARE AB SS RF 
0 – 0.01 0.42 0.38 0.40 
0 – 0.05 0.65 0.57 0.58 
0 – 0.20 0.96 0.98 0.82 

4.1 Errors with 𝑻𝑻 < 𝟐𝟐 and Large N 

It was argued in Section 2 that practical cases will tend to have 𝑇𝑇 < 2 and large 𝑁𝑁, 
and anther set of cases was examined in this range.  

Simulations were run with all combinations of the parameters 𝑁𝑁 = [100, 200, 300, 
400, 500], 𝑚𝑚 = [2, 5, 10, 20, 50]. 𝑇𝑇 took 10 values between 0.2 and 2.0, and 𝑆𝑆 was 
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random with a mean of 1.0. Fig. 5 shows error histograms and Table 4 shows the mean 
errors for 2, 4 and 8 classes. 

Figure 5 shows that when we focus on 𝑇𝑇 less than 2.0, the errors for AB increase 
with more classes, unlike the results for the wider range of traffic, and the other approx-
imations do not show a clear trend. 

AB has errors less than 5% in more than two-thirds of the cases, and less than 20% 
in 94% or more of the cases. This is somewhat better than SS and very much better than 
RF. If we consider only 10 or more servers 𝑅𝑅𝑅𝑅 is much smaller, less than 5% in over 
85% of cases, and less than 20% in over 98% of cases. 

For less than 10 servers the error increases with the number of classes, possibly due 
to class aggregation, but with 10 or more servers this was not observed. 

 

   
AB, 2 classes.  

5/500 values not in [-0.3, 0.3] 
SS, 2 classes. 

4/500 values not in [-0.3, 0.3] 
RF, 2 classes. 

255/500 values not in [-0.3, 0.3] 

   
AB, 4 classes. 

17/900 values not in [-0.3, 0.3] 
SS, 4 classes.  

16/900 values not in [-0.3, 0.3] 
RF, 4 classes.  

383/900 values not in [-0.3, 0.3] 

   
AB, 8 classes.  

55/2000 values not in [-0.3, 0.3] 
SS, 8 classes.  

53/2000 values not in [-0.3, 0.3] 
RF, 8 classes.  

1019/2000 values not in [-.3, .3] 

Fig. 5.   Histograms of 𝑅𝑅𝑅𝑅 for the Waiting Times of All Classes 

Table 4.  Mean Absolute Relative Errors with Populations in [100, 500] and T in [0.2, 2] 

 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 for AB 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 for SS 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 for RF 
2 Classes (250 cases) 0.0364 0.0483 0.4246 
4 Classes (225 cases) 0.0453 0.0584 0.3569 
8 Classes (250 cases) 0.0625 0.0568 0.6329 

4.2 Error Component Due to Class Aggregation 

To isolate the error due to class aggregation, an “ideally aggregated” model “iAgg” 
was created using simulation throughputs as weights. 𝑅𝑅𝑅𝑅(iAgg+Exact) is the error of 
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aggregation only, using the exact single class solution, while 𝑅𝑅𝑅𝑅(iAgg+Appr) is the 
error of approximation Appr applied to the iAgg model. Table 5 shows that the errors 
for the two-class and four-class cases are roughly evenly divided between aggregation 
error and the approximation errors (columns 4, 5, 6 are about double column 3). Scatter 
plots in Fig. 6 show that the aggregation error alone is largest around 𝑇𝑇 = 1, and takes 
both positive and negative values. The results in column 3 suggest that the aggregation 
error may increase with C, but the approximations appear to counter than increase, with  
smaller errors for four classes. 

Table 5.  Errors when Classes Ideally Aggregated Based on the Simulation Throughputs 

 Measure Algorithm used for the Ideal Representative Class 
  iAgg+Exact iAgg+AB iAgg+RF iAgg+SS 

Two Classes 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 0.01599 0.03887 0.04031 0.03922 
Four Classes 𝑀𝑀𝐴𝐴𝑅𝑅𝑅𝑅 0.01966 0.03250 0.03245 0.03431 
 

  
(a) RE(iAgg+Exact) for 2 classes (b) RE(iAgg+Exact) for 4 classes 

Fig. 6. The Approximation Error due only to Class Aggregation 

5 Application to the SockShop Microservices Model 

SockShop is a small but realistic microservices demonstration system. Figure 1 shows 
a LQN performance model adapted from [12], with three groups of users instead of one, 
and variable numbers of service replicas. The three approximations implemented in the 
LQNS solver (AB, RF, Conway) were compared in predicting the performance effect 
of different scalings of the Router and FrontEnd services. given by the parameter $𝑚𝑚 
in Figure 1. The value shown of 10 replicas was increased in 15 steps up to 240, reduc-
ing the response time as shown in Figure 7. The performance improves by several or-
ders of magnitude. The AB results were identical to Conway within 3 figures, while 
Rolia diverged by up to 10% at the lowest value of $𝑚𝑚..  

The mean CPU time for the solution across the cases was 0.37 sec. for AB, and 1.05 
sec for Rolia. The time for Conway increased steeply with $𝑚𝑚 up to 28859 sec (more 
than 8 hours) at $𝑚𝑚 = 190, where the experiment stopped. Thus in this case Conway is 
impractical, while Rolia is less accurate than AB and takes nearly three times as long 
(although both are quite fast).  
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Fig. 7.  Response Time of the SockShop Model with Scaled Front-end Services 

6 Scalability to of the Approximations to Very Large 
Models 

To consider large models it is not convenient or necessary to use models of real 
systems. Every possible pattern of components and interactions might be of interest, so 
models with random structure and parameters were used, with 20, 100 and 200 tasks. 
Each task offers an average of 10 operations and is scaled to an average of 20 replicas; 
the model represents a highly complex system. The 100-task case is illustrated in Figure 
8. All cases had 5 groups of users. 

 

 
Fig. 8.  A Random Model with 100 Tasks. 

The models were solved by AB and RF, with Conway for  further comparison. SS 
was not applied because it is not implemented in the solver. The solution times for these 
models are shown in Table 6. 
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Table 6.  Average Solution Times for Large Random Models 

Cases AB RF Conway 
15 cases with 20 Tasks and 20–300 users per group. 0.062 sec 0.189 sec 14.138 sec 
20 cases with 100 Tasks and 50–1000 users per 
group. 

10.3 sec 358.2 sec no result 

One case with 200 Tasks and a mean of 10 replicas 
each 

80.5 sec no result no result 

 
The AB algorithm is clearly more scalable and more robust than RF. The 200-task 

model is approaching the storage limits of the solver, and exceeds those of the simula-
tor. The increase in the times for AB is greater than is accounted for by the complexity 
of AB per server and per iteration, presumably dominated by other operations in LQNS.  

7 Related Work on FIFO Multiclass Multiservers 

The exact solution for product-form multiclass multiservers (for FIFO service with 
equal class service times or for processor-sharing queueing with equal or unequal times) 
is described in [14]. For FIFO service and unequal times, AMVA approximations are 
described in [1, 5] and (by recasting the solution as an optimization problem) in [3].  
Recently Legato and Mazza [13] have solved these networks using class aggregation, 
giving a single class queueing network which they solve by exact MVA. They go fur-
ther in aggregation than our SS approximation, which keeps the classes separate except 
for the calculation of waiting times at multiservers. However, all of these methods apply 
to FIFO servers only if the mean class service times are equal. 

For unequal class service times, Ruth [16] adapted exact MVA; Schmidt [17] ap-
proximated the multiserver by a (product-form) state-dependent-rate server; de Souza 
e Silva and Muntz approximated the queue state by a multinomial distribution [19]; and 
Conway adapted their approach to use Linearizer [6].  Rolia in [15] introduced a much 
simpler AMVA as described above and Franks [8] made a modest improvement to it. 
Casale [4] has recently proposed replacing any server by an approximate processor-
sharing server updated iteratively based on properties of a diffusion model; the work 
does not mention multiservers but appears to be capable of generalization in that direc-
tion. 

Regarding class aggregation, Dowdy et al [7] considered aggregated classes in 
queueing networks in which class service times at FIFO servers are the same, and 
showed that the aggregate analysis understates the total throughput. This result suggests 
that waiting time errors due to aggregation should be positive, however with different 
class service times the results reported in Section 4 show both positive and negative 
errors.  

Single-server approximations similar to SS have been used (without the added delay 
term) in applied studies such as [20, 21], but only for a single class. Their approximation 
accuracy does not appear to have been studied previously, for one or many classes. 
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8 Conclusions 

All the approximations which are scalable in the sense that their time complexity 
does not increase with the customer population have similar patterns of error. The re-
sults in Section 4.1 indicate that errors are substantial only in an interval of the traffic 
intensity 𝑇𝑇 between 0.5 and 1.5, and they do not exceed a relative value of about 30%. 
All the approximations had asymptotic errors under light and heavy traffic which rap-
idly approached zero. For AB and RF the approach as 𝑇𝑇 diverged from unity was more 
rapid than for SS. 

The practical usability of model-based autoscaling using these approximations may 
be limited by these errors, since the stated traffic levels include the intended operating 
point of most autoscaling systems. Model-based autoscaling would have to tolerate this 
range of prediction errors in the response time of individual services. Fortunately in a 
large system with many scaled services the errors will tend to average out, so the overall 
QoS control may be considerably better than this. Also predictions regarding more 
heavily loaded services, which are the most important, are more accurate. 

Practical usability also implies a preference for AB or SS over RF, due to non-con-
vergence of RF in some situations, particularly for large 𝑇𝑇. 

The errors for heterogeneous multiclass servers are contributed partly by class ag-
gregation and partly by the use of the approximation for the single representative (i.e. 
aggregated) class. The results in Section 4.2 indicate that the two contributions are 
roughly equal. 

The impact of the number of classes 𝐶𝐶 on the error depends on the traffic levels. For 
𝑇𝑇 in a broad range (in Table 2) the average error decreases with C for AB and SS, and 
increases for RF. For 𝑇𝑇 near to unity (in Table 4) it increases for AB, and shows no 
clear trend for SS and RF. The impact of the number of servers, 𝑚𝑚, is also complex. 
However if 𝑚𝑚 is larger than about 10, then the error decreases with further increases in 
𝑚𝑚, for all approximations. 

An unexpected result is that SS is quite close to AB in accuracy. Clearly it is much 
the simplest to calculate, so it might be the algorithm of choice. The additional delay 
term in SS has to be implemented with care since it is part of the response time of the 
server. 
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